
Eskimo User and Administration Guide

eskimo.sh / https://www.eskimo.sh / 2019-2020

Table of Contents

1. Eskimo Introduction . 1

1.1. Key Features . 2

1.2. Why is Eskimo cool ? . 3

1.3. Eskimo’s DNA. 3

1.4. Eskimo Architecture . 6

1.4.1. Techical Architecture . 6

1.4.2. Typical Application architecture . 8

1.4.3. Sample System Architecture . 8

1.5. Eskimo building . 9

2. Eskimo Installation . 10

2.1. Installation target . 10

2.1.1. Local Eskimo installation . 10

2.1.2. Installing eskimo on Windows. 11

2.2. Prerequisites . 11

2.2.1. Java 11 or greater . 11

2.2.2. System requirements . 12

2.2.3. Network requirements . 12

2.2.4. Prerequisites on eskimo cluster nodes . 12

Minimum hardware. 13

Fedora nodes specificities . 13

2.2.5. Required packages installation and Internet access on cluster nodes 14

Eskimo system user . 17

Protecting eskimo nodes with a firewall. 17

2.3. Extract archive and install Eskimo. 18

2.3.1. SystemD Installation . 18

2.3.2. Extracted Archive layout and purpose . 18

2.3.3. Utility commands . 19

2.4. Access eskimo . 19

2.5. First run and initial setup . 20

2.5.1. Building packages locally . 21

Requirements . 21

Instructions to install these tools . 22

2.5.2. Checking for updates. 24

2.6. Typical startup issues . 24

2.6.1. eskimo-users.json cannot be written . 24

2.7. Setting up SSH Public Key Authentication. 25

2.7.1. Introduction . 25

2.7.2. How Public Key Authentication Works. 25

2.7.3. Generate an SSH Key Pair. 25

2.7.4. Configure an SSH/SFTP User for Your Key . 26

Method 1: Using ssh-copy-id . 26

Method 2: Manual Configuration . 27

2.7.5. Log In Using Your Private Key. 27

2.7.6. Granting Access to Multiple Keys. 27

2.7.7. Use the private key in eskimo. 28

3. Setting up the eskimo cluster. 29

3.1. Services settings configuration . 29

3.2. Nodes and native services layout configuration . 30

3.2.1. Adding nodes to the eskimo cluster. 31

3.2.2. Deploying services . 32

3.2.3. Master services . 32

3.2.4. Slave services. 32

3.2.5. Applying nodes configuration . 33

3.2.6. Forcing re-installation of a service. 33

3.3. Marathon Services Selection . 33

4. Eskimo User Guide . 35

4.1. The menu . 35

4.2. Eskimo System Status Screen . 35

4.2.1. Action Menu . 36

4.3. Acting on services reporting errors . 36

4.4. SSH and SFTP Client . 37

4.4.1. SSH Terminal . 37

4.4.2. SFTP File Manager . 38

4.5. Services Web Consoles . 38

4.5.1. Demo Mode. 39

4.5.2. The DemoVM . 39

4.5.3. Deactivating Demo Mode on the demo VM . 40

5. Eskimo Architecture and Design Elements . 41

5.1. SSH Tunelling. 41

5.2. Security. 41

5.3. Confidentiality and cluster protection . 41

5.3.1. Data Encryption . 42

5.3.2. User rights segregation and user imprersonation . 42

5.4. High availability . 43

6. Eskimo pre-Packaged services . 44

6.1. Operation principles . 44

6.1.1. Systemd unit configuration files. 44

6.1.2. Commands wrappers for kafka, logstash, spark and flink 45

6.1.3. Reloading a Service UI IFrame . 45

6.2. NTP . 45

6.3. Zookeeper. 45

6.3.1. Zookeeper specificities within Eskimo. 46

6.4. glusterFS . 46

6.4.1. Gluster Infrastructure . 46

6.4.2. Gluster shares management . 47

6.4.3. Gluster specificities within Eskimo . 47

6.5. GDASH . 48

6.6. Elastic Logstash. 48

6.6.1. Logstash specificities within Eskimo . 48

6.7. ElasticSearch . 49

6.8. Cerebro. 49

6.9. Elastic Kibana. 49

6.9.1. Kibana specificities within Eskimo . 50

6.9.2. Pre-packaged Kibana Dashboards. 50

6.10. Apache Kafka . 50

6.11. Kafka Manager. 51

6.12. Apache Mesos . 51

6.12.1. mesos-cli . 51

6.13. Mesosphere Marathon . 51

6.14. Apache Spark . 52

6.14.1. Gluster shares for Spark. 52

6.14.2. Other spark specificities within Eskimo. 52

6.15. Apache Flink. 52

6.15.1. Gluster shares for Flink . 53

6.16. Apache zeppelin . 53

6.16.1. Zeppelin specificities within Eskimo . 53

6.16.2. A note on memory.. 54

6.16.3. Shared or Per Note interpreters . 54

6.16.4. Eskimo packaged Zeppelin Sample notes . 55

ElasticSearch Demo (Queries) . 55

Logstash Demo . 55

Spark RDD Demo . 56

Spark ML Demo (Regression) . 56

Spark SQL Demo . 56

Spark Integration ES. 56

Spark Integration Kafka . 56

Flink Batch Demo . 56

Flink Streaming Demo . 57

Flink Integration Kafka . 57

6.16.5. Zeppelin 0.9-SNAPSHOT bugs and workarounds . 57

REST API for note export is broken. 57

Importing a note from the UI is broken. 58

6.17. Prometheus . 58

6.17.1. Prometheus specificities within Eskimo . 58

6.18. Grafana . 58

6.18.1. Grafana specificities within Eskimo . 59

Admin user / password. 59

Grafana dashboards provisionning . 59

6.18.2. Pre-packaged Grafana Dashboards. 59

Appendix A: Copyright and License . 60

Chapter 1. Eskimo Introduction

A state of the art Big Data Infrastructure and Management Web Console to build, manage and
operate Big Data 2.0 Analytics clusters

Eskimo is in a certain way the Operating System of your Big Data Cluster:

• A plug and play, working out of the Box, Big Data Analytics platform fulfilling enterprise
environment requirements.

• A state of the art Big Data 2.0 platform

◦ based on Docker, Marathon, Mesos and SystemD

◦ packaging Gluster, Spark, Kafka, Flink, Nifi and ElasticSearch

◦ with all the administration and management consoles such as Cerebro, Kibana,
Zeppelin, Kafka-Manager, Grafana and Prometheus.

• An Administration Application aimed at drastically simplifying the deployment,
administration and operation of your Big Data Cluster

• A Data Science Laboratory and Production environment where Data Analytics is both

◦ developed and

◦ operated in production

Eskimo is as well:

• a collection of ready to use docker containers packaging fine-tuned and highly
customized plug and play services with all the nuts and bolts required to make them
work perfectly together.

• a framework for developing, building and deploying Big Data and NoSQL services based
on Docker, SystemD and Marathon.

Eskimo User and Administration Guide

Chapter 1. Eskimo Introduction | 1

1.1. Key Features

Eskimo key features are as follows:

Abstraction of Location

Just define where you want to run which services and let eskimo take
care of everything.

Move services between nodes or install new services in just a few clicks.

Don’t bother remembering where you installed Web consoles and UI
applications, Eskimo wraps them all in a single and consistent UI.

Eskimo Web Console

Eskimo’s tip of the iceberg is its flagship web console.

The Eskimo Console is the single and entry point to all your cluster
operations, from services installation to accessing Kibana, Zeppelin and
other UI applications.

The Eskimo Console also provides SSH consoles, File browser access
and monitoring to your cluster.

Eskimo User and Administration Guide

2 | Chapter 1. Eskimo Introduction

Services Framework

Eskimo is a Big Data Components service development and integration
framework based on Docker and Systemd.

Eskimo provides out of the box ready-to use components such as Spark,
Flink, ElasticSearch, Kafka, Mesos, Zeppelin, etc.

Eskimo also enables the user to develop his own services very easily.

1.2. Why is Eskimo cool ?

• Taking care of it !
Making Zookeeper, Mesos, Marathon, Kafka, ElasticSearch, Flink, Spark, etc. work
perfectly together is difficult and tedious.
Eskimo takes care of everything.

• Big Data 2.0
Most if not all private-cloud Big Data Platform such as Hortonworks, Cloudera, MapR,
etc. are based on Hadoop, HDFS, YARN, etc. which are quite old components and
technology.
Eskimo is based on Mesos, Marathon, ElasticSearch, Kafka and Spark, cutting edge
components from a newer generation.

• Leveraging on docker
Most if not all private-cloud Big Data Platform such as those mentioned above would
install components natively, thus having strong requirements and impacts on
underlying nodes.
Eskimo uses docker to isolate Eskimo components from the underlying host OS and vice
versa, enabling transparent upgrades, relocations of services, etc.

• Eskimo is an open platform.
Eskimo works out of the box but users and administrators can customize and extend it
the way they like, the way they decide.

1.3. Eskimo’s DNA

Eskimo User and Administration Guide

Chapter 1. Eskimo Introduction | 3

Big Data Scientist

With eskimo, Big Data Scientists can prototype and run their analytics
use cases on a thousand nodes cluster should they need it.

With Flink ML and Spark ML natively available on Flink and Spark and
usable from within Zeppelin, Data Scientists can bring their mission to
the next level: the big data way.

SciKit Learn and TensorFlow are also available from within Zeppelin of
course.

Develop your business analytics processes and deploy them in
production operations in a few clicks.

Big Data 2.0

In contrary to popular Hadoop-based and other Big Data Platforms,
Eskimo is based on cutting-edge technologies:

• GlusterFS instead of HDFS

• Spark instead of Hive or Pig

• Flink instead of Storm

• Mesos instead of Yarn

• Docker instead of not native deployment

• ElasticSearch instead of HBase or Hive

These new generation Big Data components form together a Big Dats
2.0 stack, lightweight and efficient and leveraging on modern computing
abilities (memory oriented vs. IO oriented).
This Big Data 2.0 software stack is much more efficient and effective
than any hadoop based Big Data processing cluster, while covering an
extended subset of the same use cases.

In addition, in contrary to hadoop these software components behave
just as good on a single node machine with plenty of RAM and processor
than it does on a cluster of a few small nodes, thanks to their ability of
benefiting from the multi-processor architecture of modern machines.
In addition, this comes with an interesting benefit : the ability to build on
one’s machine the very same environment than on a large production
cluster.

Eskimo User and Administration Guide

4 | Chapter 1. Eskimo Introduction

One ring to Rule them all

Making docker, gluster, elasticsearch, kafka, spark, Flink, zeppelin, etc.
all work perfectly and 100% together is very tedious and difficult.

Eskimo takes care of everything and fine tunes all these services to
make them understand each other and work together.

Eskimo enables you one-click administration of all of them, moving
services, provisioning nodes, etc.

Yet it’s open : open-source and built on standards

One size fits all

Do you want to build a production grade Big Data Processing cluster
with thousands of nodes to analyze the internet ?

Or do you want to build a small AI laboratory on your own laptop ?

Eskimo is made for you in these both cases.

Lightweight in DNA

MapR, Hortonworks, Cloudera and every other hadoop based Big Data
Platforms are Behemoths.

Eskimo leverages on gluster, mesos, spark, flink, elasticsearch,
logstash, kibana, Zeppelin, etc. - simple and extremely lightweight
components that have a broad use cases coverage while simplifying
administration, operation and usage.

Open platform extensible and customizable

Eskimo works out of the box, taking care of the burden to make all this
software works perfectly and 100% together.

Eskimo is not a black box, it’s an open platform. One can fine tune and
adapt everything exactly as desired : from the docker containers
building to the services setup on the platform.

Want to leverage on eskimo to integrate other services such as Apache
Flink or Cassandra ? declare your own services and import your own
containers, built it as you like !

Eskimo User and Administration Guide

Chapter 1. Eskimo Introduction | 5

Universal Platform

Eskimo is exhaustively built on top of Docker.

Only mesos agents need to be compiled and adapted to the host linux OS
running your cluster nodes.
All the other components - from kafka to zeppelin through spark - run
on docker

Eskimo is successfully tested on Ubuntu, Debian, CentOS, Fedora and
OpenSUSE nodes so far … more are coming.

Enterprise-grade requirements

Eskimo is designed for Enterprise deployments, fulfilling enterprise-
grade requirements:

• Security from the grounds-up: data and communication encryption,
firewall, authentication and authorization on every action, etc.

• DRP compliance / Backup and restore tooling

• High-Availability out of the box

• State of the art Integration abilities

• Very broad range of use-cases and possibilities

Cloud Friendly

Build your own Big Data Cloud

Eskimo is VM friendly.
You have a bunch of VMs somewhere on Amazon or google cloud ?
Make it a state of the art big data cluster, your way, not amazon or
google’s predefined, fixed and constraining way.

Choose your services and let eskimo take care of everything.

1.4. Eskimo Architecture

1.4.1. Techical Architecture

Eskimo’s technical architecture can be illustrated as follows:

Eskimo User and Administration Guide

6 | Chapter 1. Eskimo Introduction

Three components are available in the storage layer:

• ElasticSearch: a real-time, scalable, document-oriented and REST operated NoSQL
Database

• Gluster FS: the distributed filesystem in use with Eskimo

• Apache Zookeeper: the distributed configuration, synchronization and orchestration
system

The processing layer makes the following services available:

• Apache Kafka : used for real-time data integration and streaming processing

• Apache Spark : the large scale very versatile computation engine

• Apache Flink : a distributed processing engine for real-time and streaming stateful
computations over data stream

• Elastic Logstash : used for data ingestion, processing and dispatching

• As a sidenote, ElasticSearch can also be considered part of the processing tier since it
provides many processing abilities (pipeline computations, aggregations, etc.)

Spark and Flink are operated by Apache Mesos to achieve optimal cluster resources
booking and negotiation.

The user layer is intended for data / result visualizations and platform administration with
the following components:

• Elastic Kibana, Grafana and Apache Zeppelin for data and result visualizations

◦ Grafana is also used natively for platform monitoring concerns

• Cerebro, The Spark History Server, The Flink Dashboard, the Kafka Manager, the
Mesos Console and the Marathon Console for platform administration.

Each and every software components is executed with Docker and packaged as a docker
container. Runtime operation is ensured using Mesos and Marathon for most services and

Eskimo User and Administration Guide

Chapter 1. Eskimo Introduction | 7

static services are handled with SystemD directly and defined as SystemD units.

1.4.2. Typical Application architecture

A typical Eskimo application architecture can be illustrated as follows:

The above schema illustrates typical data flows within Eskimo

1.4.3. Sample System Architecture

This is an example of a possible deployment of Eskimo on a 6 nodes cluster:

The Eskimo application itself can be deployed on any of the cluster nodes or on another,
separated machine (as in the example above),

Requirements on machines to be used as Eskimo Cluster nodes are presented in the
following sections:

• Prerequisites on eskimo cluster nodes

Eskimo User and Administration Guide

8 | Chapter 1. Eskimo Introduction

• Required packages installation and Internet access on cluster nodes

1.5. Eskimo building

Eskimo build instructions are given in the file README.adoc located in the root folder of
the eskimo source code distribution.

Eskimo User and Administration Guide

Chapter 1. Eskimo Introduction | 9

Chapter 2. Eskimo Installation

Eskimo cluster nodes support only the Linux operating system and have to
be running a supported Linux distribution (See Prerequisites on eskimo
cluster nodes).
The eskimo application itself can very well run on windows though.
However, running the Eskimo application on Windows prevents the user
from building his own containers. When running the eskimo backend on
Windows, it’s only possible to download pre-built service container images
from www.eskimo.sh.

2.1. Installation target

The eskimo backend itself can either be installed:

• on one of the nodes from the eskimo cluster (for instance one of the node where master
services will be installed).
Doing so is however not recommended since that node would need to have the HTTP
port on which Eskimo is listening opened to external accesses and in addition Eskimo
would eat some of the resources (RAM and disk) that would be better left to the
business services.

• or on a dedicated node where only the eskimo backend runs (i.e. separated from the
Eskimo cluster nodes). This is the recommended approach.

2.1.1. Local Eskimo installation

Eskimo can also be installed on the local computer of the user where that local machine is
the single node.
This is for instance useful when eskimo is intended to be used as a local Data Science
laboratory and not targeted towards large scale Big Data Analytics.

Installing Eskimo on the local user machine is however tricky.
Eskimo does require indeed a target IP address for the installation.
A first idea one might have in this case is to use 127.0.0.1 (localhost) as single node
target IP to proceed with the installation. Unfortunately, this doesn’t work qs 127.0.0.1
resolved to different loopback interfaces in the various docker containers running eskimo
services and as a consequence eskimo services are not able to reach each others when
127.0.0.1 is used as installation target.

So something else needs to be found as target IP address.

The easiest way out here is to use the docker host address (most of the time 172.17.0.1
but may be configured differently on one’s specific local docker environment).

Eskimo User and Administration Guide

10 | Chapter 2. Eskimo Installation

In case one doesn’t have docker installed locally on his machine when processing with
Docker installation, Eskimo usually installs docker on its own.
Unfortunately, there is a chicken and egg problem here since the docker host IP address
needs to be passed as target IP address for the Eskimo node in "Node configuration" before
Eskimo can proceed with docker installation.

So one’s left with installing docker on his own before proceeding with Eskimo Node setup
on his local machine.
For this, follow the same steps as those described here: Building packages locally.

2.1.2. Installing eskimo on Windows.

As stated in introduction, the eskimo backend can run on Microsoft Windows but in this
case it’s only possible to download service container images from www.eskimo.sh. Building
one’s own container images locally is not possible.

In addition, a property in the configuration file eskimo.properties needs to be adapted
to a Windows environment, the properly that configures the path of the user definition file:

security.userJsonFile=/var/lib/eskimo/eskimo-users.json

needs to be changed to a folder existing on windows and where the user running Eskimop
has write rights, such as e.g.

security.userJsonFile=c:/Windows/Temp/eskimo-users.json

2.2. Prerequisites

Some noteworthy elements need to be beared in mind regarding eskimo prerequisites.

2.2.1. Java 11 or greater

Eskimo needs Java 11 or greater to run.

In addition, one needs to have either java in the path or the JAVA_HOME environment
variable properly set in prior to starting eskimo.

Use for instance the following commands on Linux:

Put java in PATH on Linux

export JAVA_HOME=/usr/local/lib/jdk-11
export PATH=$JAVA_HOME/bin:$PATH

(You might want to put the commands above in your /etc/profile or
/etc/bash.bashrc)

Use for instance the following commands on Windows:

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 11

Put java in PATH on Windows

set JAVA_HOME=C:\programs\jdk-11
set PATH=%JAVA_HOME%\bin;%PATH%

(On Windows, you might want to define these as System Variables: Right-click on "My
Computer", choose "Properties", then "Advanced System Settings", then "Environment
Variables" and finally add or update the variables above as "System Variables")

2.2.2. System requirements

In order to run eskimo, one needs to have

• At least 15Gb of disk storage space on the machine running Eskimo

• At least one linux machine available on the network (can be the same machine than the
one running Eskimo) that will be put in the eskimo cluster and manipulated by eskimo.
See next section regarding requirements for the machines in the eskimo cluster.

Eskimo is reached using a web browser (see startup logs). Supported web browsers are:

• Microsoft Edge 12 or greater

• Mozilla FireFox 36 or greater

• Google Chrome 41 or greater

Note: there may be other browsers / versions supported (Safari, Opera but they are not
certified to work with Eskimo)

2.2.3. Network requirements

Network requirements with Eskimo are as follows:

• 100MB ethernet between client machines (accessing eskimo cluster services through
web browser) and the machine running the Eskimo backend.

In case of cluster deployment:

• gigabit ethernet between the machine running the Eskimo backend and Eskimo cluster
nodes

• gigabit ethernet required in between cluster nodes

2.2.4. Prerequisites on eskimo cluster nodes

Linux distributions successfully tested with Eskimo and officially supported are the
following:

• Debian Stretch and greater

Eskimo User and Administration Guide

12 | Chapter 2. Eskimo Installation

• Ubuntu Xenial and greater

• CentOS 7.x and 8.x

• Fedora 29 and greater

• OpenSUSE 15.1 and greater

Other Debian-based or Red-Hat-based OSes could be supported as well but haven’t been
tested so far and may require the administrator to adapt the setup scripts located in
services_setup.

Minimum hardware

The minimum hardware capacity requirements to run eskimo are as follows:

Multiple Nodes in the Eskimo cluster, minimum requirement for one node

In cases where the eskimo cluster runs on multiples nodes (two or more nodes), the
minimum hardware capacity for each these nodes is as follows:

• 20 GB HDD storage space for the system, additional storage space depending on the
data to be manipulated and the replication factor.

• 4 CPUs (8 CPUs recommended)

• 16 GB RAM (31 GB RAM recommended)

Single Machine Eskimo deployment, minimum requirement for the single node

In cases where Eskimo is deployed on a single node (such as the host node running Eskimo
itself), the minimum hardware capacity for this node is as follows:

• 30 GB HDD storage space for the system, additional storage space depending on the
data to be manipulated.

• 8 CPUs (16 CPUs recommended)

• 32 GB RAM (64 GB RAM recommended)

Fedora nodes specificities

Fedora has switched to cgroups v2 by default now, but Mesos (and some Docker versions)
are not working well with cgroups v2 and may fail to start. With Eskimo and current version
of mesos, one needs to revert cgroups to v1 on Fedora nodes by adding the
systemd.unified_cgroup_hierarchy=0 kernel argument.

Add systemd.unified_cgroup_hierarchy=0 to the default GRUB config with sed.

sudo sed -i '/^GRUB_CMDLINE_LINUX/ s/"$/
systemd.unified_cgroup_hierarchy=0"/' /etc/default/grub

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 13

Then rebuild your GRUB config.

If you’re using BIOS boot

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

If you’re running EFI

sudo grub2-mkconfig -o /boot/efi/EFI/fedora/grub.cfg

With this, the Mesos Agent should be able to start successfully on your fedora nodes after a
reboot.

2.2.5. Required packages installation and Internet access on cluster nodes

Eskimo performs some initial setup operations on every node of the cluster it needs to
operate. Some of these operations require Internet access to download dependencies
(either RPM or DEB packages).

In case it is not possible to give access to internet to the nodes in the cluster you wish to
operate using eskimo, you will find below the yum and apt commands used during nodes
setup.
You can reproduce these commands on your environment to find out about the packages
that need to be installed in prior to have eskimo operating your cluster nodes:

Following commands are executed on a debian-based node:

Eskimo User and Administration Guide

14 | Chapter 2. Eskimo Installation

debian based node setup

export LINUX_DISTRIBUTION=`\
 awk -F= '/^NAME/{print $2}' /etc/os-release \
 | cut -d ' ' -f 1 \
 | tr -d \" \
 | tr '[:upper:]' '[:lower:]'`

system update
apt-get -yq update

docker dependencies
apt-get -yq install apt-transport-https ca-certificates curl software-
properties-common
apt-get -yq install gnupg-agent gnupg2

docker installation
curl -fsSL https://download.docker.com/linux/$LINUX_DISTRIBUTION/gpg |
sudo apt-key add
add-apt-repository deb [arch=amd64]
https://download.docker.com/linux/$LINUX_DISTRIBUTION $(lsb_release -cs)
stable
apt-get -yq update
apt-get -yq install docker-ce docker-ce-cli containerd.io

mesos dependencies
apt-get -y install libcurl4-nss-dev libsasl2-dev libsasl2-modules maven
libapr1-dev libsvn-dev zlib1g-dev

other dependencies
apt-get -yq install net-tools attr

glusterfs client
apt-get -y install glusterfs-client

Following commands are executed on a redhat-based node:

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 15

redhat based node setup

export LINUX_DISTRIBUTION=`\
 awk -F= '/^NAME/{print $2}' /etc/os-release \
 | cut -d ' ' -f 1 \
 | tr -d \" \
 | tr '[:upper:]' '[:lower:]'`

system update
sudo yum -y update

docker dependencies
yum install -y yum-utils device-mapper-persistent-data lvm2

docker installation
yum-config-manager --add-repo
https://download.docker.com/linux/$LINUX_DISTRIBUTION/docker-ce.repo
yum install -y docker-ce docker-ce-cli containerd.io

mesos dependencies
yum install -y zlib-devel libcurl-devel openssl-devel cyrus-sasl-devel
cyrus-sasl-md5 apr-devel subversion-devel apr-util-devel

other dependencies
yum install -y net-tools anacron

glusterfs client
yum -y install glusterfs glusterfs-fuse

Following commands are executed on a SUSE node:

suse node setup

system update
sudo zypper --non-interactive refresh | echo 'a'

install docker
sudo zypper install -y docker

mesos dependencies
sudo zypper install -y zlib-devel libcurl-devel openssl-devel cyrus-sasl-
devel cyrus-sasl-plain cyrus-sasl-crammd5 apr-devel subversion-devel apr-
util-devel

other dependencies
sudo zypper install -y net-tools cron

glusterfs client
sudo zypper install -y glusterfs

Again, if eskimo cluster nodes have no internet access in your setup, you need to install
all the corresponding packages (this listed above and their transitive dependencies) before
you can use these machines as eskimo cluster nodes.

Eskimo User and Administration Guide

16 | Chapter 2. Eskimo Installation

Eskimo system user

Eskimo requires to have a system user properly defined and with SSH access to reach and
operate the cluster nodes. That user can be any user but it has to be configured in Eskimo -
see First run and initial setup - and has to have SSH access to every single node to be
operated by eskimo using SSH Public Key Authentication - see Setting up SSH Public Key
Authentication.

In addition, that user needs to have sudo access without requiring to enter a password!

Protecting eskimo nodes with a firewall

The different sevices operated by Eskimo require different set of ports to communicate with
each others.

In case a firewall (firewalld or simple iptables configuration) is installed on eskimo cluster
nodes, then the following port numbers need to be explicitly open (for both UDP and TCP)
on every single node in the cluster for eskimo access:

IN ADDITION TO THE STATIC PORTS LISTED BELOW, A WHOLE SET OF PORT RANGES ARE
USED BY THE MESOS MASTER. MESOS AGENTS, MARATHON, SPARK EXECUTORS AND
FLINK WORKERS TO COMMUNICATE WITH EACH OTHER. THESE DYNAMIC PORTS ARE
CREATED ON THE FLY AND HAVING THEM CLOSED BY THE FIREWALL WOULD SIMPLY
PREVENT THEM FROM WORKING.

For this reason, whenever the eskimo cluster nodes are protected by a firewall, it is of
UTMOST IMPORTANCE that the firewall is filtering out the internal eskimo cluster nodes
IP addresses from the exclusion rules.
Every eskimo node should have wide access to every other node in the eskimo cluster.
Period.

However, it is important to filter out every single access attempt originating from outside
the Eskimo cluster. The only open port for requests outside of the eskimo cluster should be
the port 22 used by SSH since all accesses from the Eskimo console to the nodes from the
Eskimo cluster happens through SSH tunnels.

For the sake of information, the list of static ports used by the different services are listed
here:

• [cerebro] : 9000, 31900

• [elasticsearch] : 9200, 9300

• [gdash] : 28180, 31180

• [gluster] : 24007, 24008, 24009, 24010, 49152, 38465, 38466, 38467

• [grafana] : 3000, 31300

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 17

• [kafka] : 9092, 9093, 9999

• [kafka-manager] : 22080, 31220

• [kibana] : 5601, 31561

• [mesos] : 53, 61003, 61003, 61091, 61420, 62080, 62501, 64000, 5050, 7070, 8101, 8123,
8200, 8201, 8443, 8888, 9090, 9443, 9990, 15055, 15201, 61053, 61430, 61053

• [ntp] 123

• [prometheus] : 9090, 9091, 9093, 9094, 9100

• [spark] : 7077, 8580, 8980, 8581, 8981, 2304, 18480, 7337, 7222, 8032, 7222

• [flink] : 6121, 6122, 6123, 6130, 8081

• [spark-history-server] : 18080, 31810

• [zeppelin] : 38080, 38081, 31008, 31009

• [zookeeper] : 2181, 2888, 3888

• [marathon] : 5000, 28080

Again, this list is incomplete since it doesn’t reveal the dynamic port ranges mentioned
above.

2.3. Extract archive and install Eskimo

After downloading either the zip ot the tarball archive of eskimo, it needs to be extracted on
the local filesystem. This simple extraction is the only step required to install eskimo.

Then in the folder bin under the newly extracted eskimo binary distribution folder, one can
find two scripts:

• a script eskimo.bat to execute eskimo on Windows

• a script eskimo.sh to execute eskimo on Linux.

That’s it.

2.3.1. SystemD Installation

In case one wants to have Eskimo’s backend operated (automatically started, etc.) using
SystemD, the script bin/utils/__install-eskimo-systemD-unit-file.sh can be
used to perform all the required setup steps for a successful SystemD launch as well as
installing the Eskimo SystemD unit configuration file.

2.3.2. Extracted Archive layout and purpose

Once extracted on the filesystem, the Eskimo folder contains the following elements:

Eskimo User and Administration Guide

18 | Chapter 2. Eskimo Installation

• bin : contains executables required to start Eskimo as well as utility commands (in
utils sub-folder)

• conf : contains Eskimo configuration files

• lib : contains eskimo runtime binaries

• packages-dev : contains the Eskimo docker images (packages) development framework
which is used to build eskimo services docker packages locally (this is not required if
the administrators decides to download packages from www.eskimo.sh)

• packages_distrib: contains eventually the eskimo services docker image packages
(either build locally or downloaded from internet)

• services_setup: contains the services installation framework. Each and every
customization an administrator wishes to apply on eskimo services is done by
modifying / extending / customizing the shell scripts in this folder.

• static_images: is intended to be used to add additional icons or logos for new
custom services added by an administrator to Eskimo.

2.3.3. Utility commands

Some command line utilities to ease eskimo’s administration are provided in bin/utils:

• encode-password.bat|.sh : this script is used to generate the encoded password to
be stored in the user definition file. See Access eskimo

2.4. Access eskimo

With eskimo properly started using the scripts in bin discussed above , one can reach
eskimo using http://machine_ip:9191.
The default port number is 9191. This can be changed in configuration file
eskimo.properties.

The default login / password credentials are admin / password.

This login is configured in the file pointed to by the configuration property
security.userJsonFile.
A sample file is created automatically if the target file doesn’t exist with the admin login
above.

The structure of this file is as follows;

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 19

http://machine_ip:9191

Sample user definition file

{
 "users" : [
 {
 "username" : "admin",
 "password" :
"$2a$10$W5pa6y.k95V27ABPd7eFqeqniTnpYqYOiGl75jJoXApG8SBEvERYO"
 }
]
}

The password is a BCrypt hash (11 rounds) of the actual password.

2.5. First run and initial setup

Upon first run, eskimo needs to be setup before it can be used.

Right after its first start, one single screen is available : the setup page.
It is the only accessible page as long as initial setup is not properly completed and service
docker images (plus mesos packages) have not been either downloaded or built.

The setup page is as follows:

On the setup page, the user needs to input following information:

• Configuration Storage Path : a folder on the filesystem where the system user running

Eskimo User and Administration Guide

20 | Chapter 2. Eskimo Installation

eskimo needs to have write access to. The dynamic configuration and state persistence
of eskimo will be stored in this location.

• SSH Username : the name of the SSH user eskimo has to use to access the cluster
nodes. Every node that need to be managed by eskimo needs to have granted access
using SSH Public Key authentication to this user.

• SSH private key : the private key to use for SSH Public Key authentication for the above
user. See the next section in regards to how to generate this key : Setting up SSH Public
Key Authentication

• Mesos Origin : the user needs to choose whether Mesos packages need to be built
locally (on eskimo host node) or whether pre-built versions shall be downloaded from
the remote packages repository (by default https://www.niceideas.ch.)

• Docker Images Origin : the user needs to choose whether service package images
needs to be built locally or whether they need to be downloaded from the remote
packages repository (by default https://www.niceideas.ch.)

Once the settings have been chosen by the user, clicking "Save and Apply Setup" will launch
the initial setup process and the archives will be built locally or downloaded. This can take a
few dozen of minutes depending on your internet connection and/or the eskimo host
machine processing abilities.

Regarding the SSH private key, the next section gives indication with regards to how to
build a public / private key pair to enable eskimo to reach and manage the cluster nodes.

The document "Service Development Framework" in the section "Setting up a remote
packages repository" presents the nuts and bolts required in setting up a remote packages
repository.
The remote repository URL is configured in eskimo.properties using the configuration
property :
system.packagesDownloadUrlRoot : The Root URL to download the packages from.

2.5.1. Building packages locally

Building eskimo packages locally means building the services docker images on your local
host machine running eskimo. This means that instead of downloading docker images from
the eskimo repository, the user wants to build them on his own and only download the
source package archives from their respective software editor web site (e.g. Apache,
Elastic, etc.)

Requirements

There are some important requirements when desiring to build the software packages on
one’s own:

• The host machine running eskimo needs at least 25 GB of free hard drive space

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 21

https://www.niceideas.ch.
https://www.niceideas.ch.

• The host machine running eskimo needs at least 16 GB of free RAM space available

In addition, building packages locally requires some tools to be available on the host
machine running eskimo itself. Mostly, git, docker and wget need to be installed on your
host machine.

Instructions to install these tools

Following commands are required on a debian-based host:

debian host dependencies to build packages

export LINUX_DISTRIBUTION=`\
 awk -F= '/^NAME/{print $2}' /etc/os-release \
 | cut -d ' ' -f 1 \
 | tr -d \" \
 | tr '[:upper:]' '[:lower:]'`

system update
apt-get -yq update

eskimo dependencies
apt-get -yq install wget git

docker dependencies
apt-get -yq install apt-transport-https ca-certificates curl software-
properties-common
apt-get -yq install gnupg-agent gnupg2

docker installation
curl -fsSL https://download.docker.com/linux/$LINUX_DISTRIBUTION/gpg |
sudo apt-key add
add-apt-repository deb [arch=amd64]
https://download.docker.com/linux/$LINUX_DISTRIBUTION $(lsb_release -cs)
stable
apt-get -yq update
apt-get -yq install docker-ce docker-ce-cli containerd.io

Enable and start docker
systemctl enable docker
systemctl start docker

Add current user to docker group
usermod -a -G docker $USER

(system or at least shell / process restart required after this)

Following commands are required on a redhat-based host:

Eskimo User and Administration Guide

22 | Chapter 2. Eskimo Installation

redhat host dependencies to build packages

export LINUX_DISTRIBUTION=`\
 awk -F= '/^NAME/{print $2}' /etc/os-release \
 | cut -d ' ' -f 1 \
 | tr -d \" \
 | tr '[:upper:]' '[:lower:]'`

system update
yum -y update

eskimo dependencies
yum install -y wget git

docker dependencies
yum install -y yum-utils device-mapper-persistent-data lvm2

docker installation
yum-config-manager --add-repo
https://download.docker.com/linux/$LINUX_DISTRIBUTION/docker-ce.repo
yum install -y docker-ce docker-ce-cli containerd.io

Enable and start docker
systemctl enable docker
systemctl start docker

Add current user to docker group
usermod -a -G docker $USER

(system or at least shell / process restart required after this)

Following commands are required on a SUSE host:

suse host dependencies to build packages

system update
zypper --non-interactive refresh | echo 'a'

eskimo dependencies
zypper install -y git wget

install docker
zypper install -y docker

Enable and start docker
systemctl enable docker
systemctl start docker

Add current user to docker group
usermod -a -G docker $USER

(system or at least shell / process restart required after this)

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 23

2.5.2. Checking for updates

At any time after initial setup - and if and only if the chosen installation method is
downloading packages, the user can apply setup again to check on the packages server (by
default https://www.eskimo.sh) if updates are available for service docker images or mesos
packages.

2.6. Typical startup issues

Several issues can happen upon first eskimo startup.
This section describes common issues and ways to resolve them.

2.6.1. eskimo-users.json cannot be written

If you meet an error as the following one upon startup:

Impossible to write eskimo-users.json

Caused by: ch.niceideas.common.utils.FileException: ./eskimo-users.json
(Unauthorized access)
 at
ch.niceideas.common.utils.FileUtils.writeFile(FileUtils.java:154)
 at
ch.niceideas.eskimo.security.JSONBackedUserDetailsManager.<init>(JSONBacke
dUserDetailsManager.java:81)
 at
ch.niceideas.eskimo.configurations.WebSecurityConfiguration.userDetailsSer
vice(WebSecurityConfiguration.java:127)
 ... 50 more
Caused by: java.io.FileNotFoundException: ./eskimo-users.json
(Unauthorized access)
 at java.base/java.io.FileOutputStream.open0(Native Method)
 at
java.base/java.io.FileOutputStream.open(FileOutputStream.java:276)
 at
java.base/java.io.FileOutputStream.<init>(FileOutputStream.java:220)
 at
java.base/java.io.FileOutputStream.<init>(FileOutputStream.java:170)
 at java.base/java.io.FileWriter.<init>(FileWriter.java:90)
 at
ch.niceideas.common.utils.FileUtils.writeFile(FileUtils.java:149)
 ... 52 more

Eskimo uses a local file to define users and access credentials. Upon first startup, if that
file doesn’t exist already, it is created by eskimo (with the default credentials above) at the
path pointed to by the property security.userJsonFile in eskimo.properties.

If you experience the error above or something alike, change that property to point to a
location where the first version of the file can successfully be created.

Eskimo User and Administration Guide

24 | Chapter 2. Eskimo Installation

https://www.eskimo.sh

2.7. Setting up SSH Public Key Authentication

2.7.1. Introduction

Public key authentication is a way of logging into an SSH/SFTP account using a
cryptographic key rather than a password. This is a strong requirement in the current
version of eskimo.

2.7.2. How Public Key Authentication Works

Keys come in pairs of a public key and a private key. Each key pair is unique, and the two
keys work together.

These two keys have a very special and beautiful mathematical property: if you have the
private key, you can prove your identify and authenticate without showing it, by using it to
sign some information in a way that only your private key can do.

Public key authentication works like this:

1. Generate a key pair.

2. Give someone (or a server) the public key.

3. Later, anytime you want to authenticate, the person (or the server) asks you to prove you
have the private key that corresponds to the public key.

4. You prove you have the private key.

5. You don’t have to do the math or implement the key exchange yourself. The SSH server
and client programs take care of this for you.

2.7.3. Generate an SSH Key Pair

You should generate your key pair on your laptop, not on your server. All Mac and Linux
systems include a command called ssh-keygen that will generate a new key pair.

If you’re using Windows, you can generate the keys on your server. Just remember to copy
your keys to your laptop and delete your private key from the server after you’ve generated
it.

To generate an SSH key pair, run the command ssh-keygen.

Calling ssh-keygen

badtrash@badbooknew:/tmp$ ssh-keygen
Generating public/private rsa key pair.

You’ll be prompted to choose the location to store the keys. The default location is good
unless you already have a key. Press Enter to choose the default location unless you

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 25

already have a key pair there in which case you might want to take great care not to
overwrite it.

Enter file in which to save the key (/home/badtrash/.ssh/id_rsa):
/tmp/badtrash/id_rsa

Next, you’ll be asked to choose a password. Using a password means a password will be
required to use the private key. Eskimo requires at all cost that you leave the password
empty otherwise the key won’t be usable with eskimo - at least in this current version.
Press two times "Enter" there :

Enter passphrase (empty for no passphrase):
Enter same passphrase again:

After that, your public and private keys will be generated. There will be two different files.
The one named id_rsa is your private key. The one named id_rsa.pub is your public
key.

Your identification has been saved in /tmp/badtrash/id_rsa.
Your public key has been saved in /tmp/badtrash/id_rsa.pub.

You’ll also be shown a fingerprint and "visual fingerprint" of your key. You do not need to
save these.

The key fingerprint is:
SHA256:/HPC91ROJtCQ6Q5FBdsqyPyppzU8xScfUThLj+3OKuw badtrash@badbooknew
The key's randomart image is:
+---[RSA 2048]----+
| .+=...|
| +=+. |
| oo.+* |
| +oo.o|
| S .o= +.+|
| = +.+ B.|
| %.o oo.|
| o.Boo o|
| oo .E.o. |
+----[SHA256]-----+

2.7.4. Configure an SSH/SFTP User for Your Key

Method 1: Using ssh-copy-id

Now that you have an SSH key pair, you’re ready to configure your app’s system user so you
can SSH or SFTP in using your private key.

To copy your public key to your server, run the following command. Be sure to replace

Eskimo User and Administration Guide

26 | Chapter 2. Eskimo Installation

“x.x.x.x” with your server’s IP address and SYSUSER with the name of the the system user
your app belongs to.

ssh-copy-id SYSUSER@x.x.x.x

Method 2: Manual Configuration

If you don’t have the ssh-copy-id command (for instance, if you are using Windows), you
can instead SSH in to your server and manually create the ~/.ssh/authorized_keys
file so it contains your public key.

First, run the following commands to make create the file with the correct permissions.

(umask 077 && test -d ~/.ssh || mkdir ~/.ssh)
(umask 077 && touch ~/.ssh/authorized_keys)

Next, edit the file .ssh/authorized_keys using your preferred editor. Copy and paste
your id_rsa.pub file into the file.

2.7.5. Log In Using Your Private Key

You can now SSH or SFTP into your server using your private key. From the command line,
you can use:

ssh SYSUSER@x.x.x.x

If you didn’t create your key in the default location, you’ll need to specify the location:

ssh -i ~/.ssh/custom_key_name SYSUSER@x.x.x.x

If you’re using a Windows SSH client, such as PuTTy, look in the configuration settings to
specify the path to your private key.

2.7.6. Granting Access to Multiple Keys

The ~/.ssh/authorized_keys file you created above uses a very simple format: it can
contain many keys as long as you put one key on each line in the file.

If you have multiple keys (for example, one on each of your laptops) or multiple developers
you need to grant access to, just follow the same instructions above using ssh-copy-id or
manually editing the file to paste in additional keys, one on each line.

When you’re done, the .ssh/authorized_keys file will look something like this (don’t copy
this, use your own public keys):

Eskimo User and Administration Guide

Chapter 2. Eskimo Installation | 27

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDSkT3A1j89RT/540ghIMHXIVwNlAEM3WtmqVG7YN/wYw
tsJ8iCszg4/lXQsfLFxYmEVe8L9atgtMGCi5QdYPl4X/c+5YxFfm88Yjfx+2xEgUdOr864eaI2
2yaNMQ0AlyilmK+PcSyxKP4dzkf6B5Nsw8lhfB5n9F5md6GHLLjOGuBbHYlesKJKnt2cMzzS90
BdRk73qW6wJ+MCUWo+cyBFZVGOzrjJGEcHewOCbVs+IJWBFSi6w1enbKGc+RY9KrnzeDKWWqzY
nNofiHGVFAuMxrmZOasqlTIKiC2UK3RmLxZicWiQmPnpnjJRo7pL0oYM9r/sIWzD6i2S9szDy6
aZ badtrash@badbook
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCzlL9Wo8ywEFXSvMJ8FYmxP6HHHMDTyYAWwM3AOtsc96
DcYVQIJ5VsydZf5/4NWuq55MqnzdnGB2IfjQvOrW4JEn0cI5UFTvAG4PkfYZb00Hbvwho8JsSA
wChvWU6IuhgiiUBofKSMMifKg+pEJ0dLjks2GUcfxeBwbNnAgxsBvY6BCXRfezIddPlqyfWfnf
tqnafIFvuiRFB1DeeBr24kik/550MaieQpJ848+MgIeVCjko4NPPLssJ/1jhGEHOTlGJpWKGDq
QK+QBaOQZh7JB7ehTK+pwIFHbUaeAkr66iVYJuC05iA7ot9FZX8XGkxgmhlnaFHNf0l8ynosan
qt badtrash@desktop

2.7.7. Use the private key in eskimo

Once the above procedure properly followed and the public keys added to the authorized
key for your the user to be used by eskimo, you can use the corresponding private key in the
eskimo setup page to grand access to eskimo to the cluster nodes.

Eskimo User and Administration Guide

28 | Chapter 2. Eskimo Installation

Chapter 3. Setting up the eskimo cluster

Right after the initial setup presented in the previous chapter. The administrator can start
setting up and installing the Eskimo Big Data Analytics cluster.

The process is the following:

1. Service settings configuration. Fine tune the settings for the services one is about to
install on the Eskimo cluster

2. Nodes and native services layout configuration : Declare the IP addresses of the nodes
to me installed and operated by eskimo and select the native services that should run on
these nodes

3. Marathon services selection : Declare which of the marathon services you want to
deploy on the cluster

3.1. Services settings configuration

The most essential settings for all eskimo pre-packaged services are set automatically in
such a way that the nominal analytics use cases of an eskimo cluster work out of the box.

But for many specific use cases, the default values for these settings as handled by Eskimo
are not sufficient.
For this reason, Eskimo CE embeds a settings editor enabling administrators to fine tune
runtime settings for eskimo embedded services.

The settings editor is available from the menu under "Configured Services":

Eskimo User and Administration Guide

Chapter 3. Setting up the eskimo cluster | 29

For every service, administrators have access to supported configuration files and
supported settings.
The default values enforced by eskimo right after installation are indicated.

3.2. Nodes and native services layout configuration

The fourth menu entry under "Platform Administration" is the most important part of the
Eskimo Administration console: it provides the system administrators / Eskimo Users with
the way to deploy the eskimo managed native services on the eskimo cluster nodes.

Eskimo native services are docker containers managed (started / stopped / monitored /
etc.) by systemd. Native services are operated by SystemD directly on the nodes, while
marathon services are operated through Mesos / Marathon.

Setting up a native services on the eskimo cluster usually boils down to these 2 phases :

• Adding nodes to the eskimo cluster - using the Add Node button or ranges of nodes
using the Add Range button.

• Selecting the services that should be deployed and operated and the configured nodes

Below is an example of a tiny cluster with three nodes setup:

Eskimo User and Administration Guide

30 | Chapter 3. Setting up the eskimo cluster

As a sidenote, whenever nodes share the same configuration, they can be defined as a
range of IP addresses instead of defining each and every one of them, thus simplifying the
configuration as explained in the next section.

3.2.1. Adding nodes to the eskimo cluster

Whenever one wants to operate a cluster of a hundred of nodes with Eskimo, one doesn’t
want to have to define the hundred nodes one after the other. Not to mention that wouldn’t
make any sense since most nodes of that cluster would actually have the very same
configuration (in terms of services topology).

This is the rationality behind the notion of "Range of nodes"- The idea here is to be able to
add a single and consistent configuration to all the nodes sharing the same configuration.

Single node configurations and range of nodes can be combined at will. Eskimo will
however refuse to apply configuration if the resolution of the various ranges and single
nodes leads to an IP address being defined several times.

Also, all nodes in a range are expected to be up and running and Eskimo will consider them
so and report errors if one node in a range is not answering.
Should you have holes in your range of IP addresses, you are expected to define multiple

Eskimo User and Administration Guide

Chapter 3. Setting up the eskimo cluster | 31

ranges, getting rid of the holes in your range of IPs. This is fairly important if you want
Eskimo to be able to successfully manage your cluster.

In its current version (0.3 at the time of writing this document), eskimo
requires at all cost nodes to be defined using IP addresses and in no way
are hostnames or DNS names supported. In this version of eskimo, only IP
addresses are supported, period.
Unfortunately with big data technologies and especially spark and mesos,
supporting DNS or hostnames is significantly more complicated than direct
IP addresses resolutions.
We are working on this and the next version of eskimo will support working
with hostnames instead of IP addresses. But for the time being,
administrators need to configure eskimo using IP addresses and only IP
addresses.

3.2.2. Deploying services

With all nodes from the cluster to be managed by eskimo properly identified either as
single node or as part of a range of nodes, services can be configured and deployed.

3.2.3. Master services

Some services are considered master services and are identified on the services selection
window as unique services (understand services that can be deployed only once, e.g.
Kibana, Zeppelin, Mesos-Master, etc.) and configured using a radio button

These "Master services" - considered unique - can only be configured in single node
configuration and only once for the whole cluster:

3.2.4. Slave services

Some other services are considered slave services and can be deployed at will, on one
single or all nodes of the cluster (understand services that can be deployed multiple times,
e.g. elasticsearch, kafka, mesos-agent, etc.) and configured using a checkbox on the
services selection window.

Eskimo User and Administration Guide

32 | Chapter 3. Setting up the eskimo cluster

These "Slave Services" - considered multiple - can be configured at will.

3.2.5. Applying nodes configuration

Once al nodes are properly configured with their desired set of services, clicking on "Apply
Configuration" will initiate the Nodes Configuration process.

That setup process can be quite long on large clusters with plenty of nodes even though a
lot of tasks are performed in parallel.

One should note that this configuration can be changed at will! Master services can be
moved back and forth between nodes, slave services can be removed from nodes or
added at will after the initial configuration has been applied, Eskimo takes care of
everything !

As a sidenote, Eskimo Community Edition doesn’t support high availability for master
services, one needs to acquire Eskimo Enterprise Edition for high availability.

Applying configuration is also useful when a service is reporting an error for instance such
as needed restart or being reported as vanished.
In such cases a first step to resolve the problem is getting to the "Configure Eskimo Nodes"
screen and re-applying configuration.

Finally, whenever an installation or another operation fails, after fixing the problem (most
of the time correcting the service installation scripts in the service installation framework),
the installation or other operations can be recovered from where it failed by simply re-
applying the configuration here.

Applying node configuration is re-entrant / idempotent.

3.2.6. Forcing re-installation of a service.

The button "Force reinstall" enables the user to select services that will be reinstalled on
every node from the latest service docker image available.
Dependent services will be properly restarted.

3.3. Marathon Services Selection

The last step in the Eskimo cluster installation consists in deploying marathon services.

This is performed by the fifth menu entry under "Platform Administration" called "Config.
Marathon Services".

The process is actually very simple and one just needs to select the services to be installed
and operated automatically by marathon.

Eskimo User and Administration Guide

Chapter 3. Setting up the eskimo cluster | 33

Just as for native node host services, Eskimo provides a possibility to force the
reinstallation of marathon services.
Just click on the "Force Reinstall" button and choose which services should be re-installed
on marathon.

Eskimo User and Administration Guide

34 | Chapter 3. Setting up the eskimo cluster

Chapter 4. Eskimo User Guide

This chapter is the eskimo user guide and related to feature available to both
administrators and standard users.

4.1. The menu

The menu on the left is separated in two parts :

1. Eskimo Services : Eskimo services declaring a web console are automatically available
from within this menu. The web console is available in an iframe from within eskimo.
Clicking again on the menu entry while the web console is already displayed forced a
refresh of the iframe.

2. Platform Administration : This is where eskimo is configured, the layout of the services
on cluster nodes defined and the cluster monitored.

4.2. Eskimo System Status Screen

One of the most essential screen of the Eskimo Web Console, the one which is reach just
after login, is the System status screen.

This is an example of the status screen showing a three nodes cluster and the services
installed on this cluster.

On the example above, all services are in green, which indicates that they are working fine.

Services can be in:

Eskimo User and Administration Guide

Chapter 4. Eskimo User Guide | 35

• OK (Check) - green : the service is working alright

• OK (Check) - red) : the service is working alright although it needs to be restarted
following some dependencies updates or re-installation.

• OK (Check) - purple : the service is running but pending removal from the node.

• KO (Cross) - red: the service is reporting errors (down)

• NA (Question Mark) - red : the service is installed (and should be available) but cannot
be found on node

The user can choose between the node view (default) as above or the table view which is
more suited to monitor large clusters with hundreds of nodes.

4.2.1. Action Menu

When mouse-over'ing a service on a node in the table view, the user has access to the
service action menu which he can use to stop / start / restart a service or even force its full
re-installation.

In addition to these default commands, Eskimo Services can provide additional custom
commands made available to administrators and/or users in this action menu.

This is for instance the action menu when clicking on Zeppelin in the table view:

4.3. Acting on services reporting errors

Most of the time when a service is reporting an error, a first step is to try to reapply the
configuration.

Eskimo User and Administration Guide

36 | Chapter 4. Eskimo User Guide

See Applying nodes configuration

4.4. SSH and SFTP Client

The last and last but one menu entries in the "Eskimo Services" part are special consoles
implemented within eskimo to administer the cluster nodes.

4.4.1. SSH Terminal

The menu "SSH Terminals" gives access to SSH terminals to each and every node
configured in the eskimo cluster, just as a plain old SSH console, but from within your web
browser.

As a design choice, the SSH Terminal doesn’t provide any toolbar but leverages on
keyboard shortcuts to perform most useful actions.

SSH Terminal shortcuts:

• Ctrl + Shift + Left : show terminal tab on the left

• Ctrl + Shift + Right : show terminal tab on the right

• Ctrl + Shift + C : Copy the currently selected text - Using Ctrl + Shift + C
instead of Ctrl + C since Ctrl + C is reserved for cancelling current / pending
command

• Ctrl + V : Paste the clipboard content to the console - Here since Eskimo runs as a
web app, it is unfortunately obligatory to use Ctrl + V for pasting the clipboard due to

Eskimo User and Administration Guide

Chapter 4. Eskimo User Guide | 37

browser limitations (Only an event answering to Ctrl + V can access the clipboard)

Various notes related to Eskimo terminal console usage:

• The initial terminal size is computed automatically from the available window size.
Unfortunately in the current version, resizing the terminal is not suppported. Whenever
the user resizes its Web Browser window, the only way to resize the terminal is by
closing it and reopening it.

• Shift + PgUp and Shift + PgDown to scroll the terminal is not supported. A sound
usage of | less is recommended when pagination is required.

4.4.2. SFTP File Manager

The Menu "SFTP File Manager" gives access to a web file manager which one can use to

• Browse the nodes filesystem

• Visualize text files stored on nodes

• Download binary file stored on nodes

• Upload files on nodes

• etc.

4.5. Services Web Consoles

Some services managed by eskimo are actually application with a Web Graphical User

Eskimo User and Administration Guide

38 | Chapter 4. Eskimo User Guide

Interface or Web Console in the Eskimo terminology.
If properly configured for it - See Eskimo Services Developer Guide - these web consoles are
detected as is and available from within Eskimo.

They are disposed in the menu under "Eskimo Services".

The pre-packaged web consoles with Eskimo are Zeppelin, Gdash, Kibana, Grafana,
Cerebro, Spark History Server, Flink App Manager, Kafka Manager, the Mesos Console and
the Marathon Console.

4.5.1. Demo Mode

Eskimo supports a Demo Mode which is in use for instance, on the DemoVM downloadable
from the eskimo web site.
The purpose of the Demo Mode is to be able to showcase all possibilities of Eskimo -
including administration features - while minimizing the runtime size and preventing users
from breaking eskimo.

In Demo Mode, following actions are blocked:

• Reinstalling a service

• Changing or re-applying nodes configuration

• Changing or re-applying marathon configuration

• Changing or re-applying setup configuration

Demo Mode is activated by changing the property eskimo.demoMode to true in the
confguration file eskimo.properties:

Configuration Property related to Demo Mode

Whether to put eskimo in Demo Mode (true, false)
The eskimo demo mode is used for the DemoVM. In demo mode, following
restrictions apply:
- Cannot change nodes config
- Cannot change marathon config
- Cannot re-install a service
eskimo.demoMode=false

4.5.2. The DemoVM

The Eskimo DemoVM downloadable from the eskimo web site. It is intended as a
demonstration of the features of the eskimo platform and enables users to test eskimo’s
possibilities.

The Eskimo DemoVM is provided with Demo Mode enabled by default, with the limits
explained above (some actions are blocked).

Eskimo User and Administration Guide

Chapter 4. Eskimo User Guide | 39

In case a user wants to use the features that are disabled in Demo Mode, he needs to
disable Demo Mode.

4.5.3. Deactivating Demo Mode on the demo VM

In order to deactivate Demo Mode, change the property eskimo.demoMode back to to
false in the confguration file eskimo.properties.

Unfortunately, this is not sufficient. The Eskimo DemoVM, for the sake of shortening it’s
size, doesn’t package the Eskimo Service Package Images, it just packages placeholders
instead.
So these placeholders need to be removed and the actual Eskimo Service Package Images
need to be re-created or downloaded.

In order to do this, one should delete the content of the folder packages_distrib from
the Eskimo installation folder:

Delete packages_distrib content

connect to your VM, then:
sudo rm -RF /usr/local/lib/eskimo-V0.3/packages_distrib/*

When this is done the Eskimo Web UI will automaticalyl bring the user back to the setup
page and enable him to either build or download the Eskimo Service Package Images.
Internet access from the VM is required.

Eskimo User and Administration Guide

40 | Chapter 4. Eskimo User Guide

Chapter 5. Eskimo Architecture and Design Elements

This section presents various architecture and design elements of Eskimo.

5.1. SSH Tunelling

One of the most important features of the Eskimo Web Console is its ability to provide in a
single and consistent Graphical User Interface all the underlying component administration
Consoles such as the Mesos Console or the Kafka Manager, just as the essential Data
Science Applications such as Kibana and Zeppelin.

The Eskimo Frontend wraps these other web applications in its own User Interface and the
Eskimo backend proxies their HTTP data flows to their respective backend through SSH, in
a transparent and secured way.
The actual location of these software components (the runtime cluster node on which they
are actually executed) is only known by the eskimo backend and is handled automatically.
Whenever such a console or service is moved from a node to another node, either manually
or automatically by Marathon, that is completely transparent to the end user.

5.2. Security

This section presents different important aspects of the security principle within Eskimo.

5.3. Confidentiality and cluster protection

The key principle on which Eskimo leverages consists in *protecting the cluster nodes from
external accesses.

Eskimo makes it so that each and every access to the eskimo cluster services are made by
itself. Eskimo acts as a proxy between the external world and the eskimo cluster nodes
(See SSH Tunelling above).

Eskimo User and Administration Guide

Chapter 5. Eskimo Architecture and Design Elements | 41

When building eskimo cluster nodes, administrators should ensure to leverage on
iptables or firewalld to ensure

• Only IP addresses within the Eskimo cluster nodes range or sub-network can have open
and wide access to the Eskimo nodes.

• All external IP addresses (external to the eskimo cluster) would have access only to

◦ Port 22 for eskimo to be able to reach them - if the eskimo application itself is
installed outside of the eskimo cluster

◦ Port 80 of the node running eskimo - if the eskimo application itself is installed on
one of the eskimo cluster node (or the port on which Eskimo is answering

This principle is illustrated by the schema at Sample System Architecture.

When setting up Eskimo, administrators have to provide the SSH private key certificate that
Eskimo will use to access all services running on internal eskimo cluster nodes. It is of
utmost importance to treat this key with great confidentiality and ensure it is only usable by
the Eskimo system user.

5.3.1. Data Encryption

Eskimo recommends to encrypt filesystem partitions use for data storage, either at
hardware level if that is supported or at Operating System level.

Especially following folders or mount points have to be encrypted:

• /var/lib/spark used for spark data and temporary data storage

• /var/lib/elasticsearch used as Elasticsearch storage folder

• /var/lib/gluster used for gluster bricks storage

It’s also possible within Eskimo to customize the ElasticSearch instances setup script to
leverage on ElasticSearch’s native data at rest encryption abilities.

5.3.2. User rights segregation and user imprersonation

Note on user impersonation and user rights segregation: Eskimo Community Edition
doesn’t support user rights segregation. All users within Eskimo Community Edition are
considered administrators and have full access to all Eskimo user and administration
features.

If user rights segregation, authorizations enforcement and user impersonation are key
concerns for one’s enterprise environment, one should consider upgrading to Eskimo
Enterprise Edition which provides state of the art implementations of each and every
Enterprise Grade requirement.

Eskimo User and Administration Guide

42 | Chapter 5. Eskimo Architecture and Design Elements

5.4. High availability

Eskimo Community Edition provides only partial HA - High Availability - support.

Basically:

• Flink and Spark applications leveraging on mesos are natively Highly Available and
resilient to slave nodes vanishing.

• ElasticSearch as well is natively highly-available as long as the applications reaching it
support using multiple bootstrap nodes.

• All web consoles and administration applications leveraging on marathon (such as
Kibana, Zeppelin, Cerebro, the kafka-manager, etc. are natively available as well.

However in Eskimo Community Edition, some services are not highly-available and form
single point of failure forcing administrators to take manual actions when problems occur
(service crash or node vanishing).
These Single Point of Failure services - not highly available - are: Zookeeper, Mesos-
Master, Flink App Master and Marathon itself.

If full high-availability is an important requirement for one’s applications, then one should
consider upgrading to Eskimo Enterprise Edition which implements 100% high availability
for every components.

Eskimo User and Administration Guide

Chapter 5. Eskimo Architecture and Design Elements | 43

Chapter 6. Eskimo pre-Packaged services

In the current version, eskimo provides pre-packaged docker images as well as services
setup configurations for the pre-packaged software components.

Eskimo takes care of everything regarding the building of the docker images for these
software components as well their setup, installation and operation on the eskimo cluster
nodes.
Supported packaged services are defined at three different leveks in order to be operable
by Eskimo:

1. They must be defined and configured in the configuration file services.json

2. They must have a setup.sh script in their services_setup folder.

3. They must have a docker image available containing the ready-to-run vanilla software.

This is detailed in the Service Installation Framework Guide.

This chapter gives some additional information related to these software components as
well as present some design decisions regarding their operation.

6.1. Operation principles

We won’t go into all details of each and every of the list of software components packaged
within eskimo.

We are just describing hereunder, in a raw fashion, some important specificities for some
of them.

6.1.1. Systemd unit configuration files

Eskimo uses SystemD to manage and operate services. Services themselves are
implemented as docker containers.

This is how docker operations are mapped to systemctl commands :

• systemctl stop service: kills and removes the service docker container

• systemctl start service: creates and starts a new docker container from the
reference image

Since every restart of a service creates actually a new docker container, containers are
inheritently not stateful and freshly restarted every time.
This is why the persistent data is stored under sub-folders of /var/lib which is mounted
to the docker container.

Eskimo User and Administration Guide

44 | Chapter 6. Eskimo pre-Packaged services

https://www.eskimo.sh/doc/service-dev-guide.html#services_installation_framework

6.1.2. Commands wrappers for kafka, logstash, spark and flink

Commands such as kafka create-producer.sh or spark’s spark-submit work only
from within the respective kafka or spark executor docker containers.

For this reason, eskimo provides host-level wrappers in /usr/local/bin and
/usr/local/sbin for most important commands.
These wrappers take care of calling the corresponding command in the required container.

The remaining of this chapter presents each and every pre-packaged service:

6.1.3. Reloading a Service UI IFrame

Master services that have a wen console and other UI applications are wrapped and shown
from within the Eskimo UI, in a consistent and coherent fashion, without the user needing
to reach anything else that the Eskimo UI to access all services and features of an Eskimo
cluster.

These wrapped UI applications are displayed as iframes in the Eskimo main UI window.

Whenever a service UI is being displayed by selecting the service from the menu, clicking
the service menu entry a second time will force refresh the service iframe.

6.2. NTP

NTP - Network Time Protocol - is used within Eskimo to synchronize all node clocks on the
eskimo cluster.

Eskimo typically elects an NTP master synchronizing over internet (if available) and all
other NTP instances are considered slaves and synchronize to this NTP master.

6.3. Zookeeper

Zookeeper is a distributed configuration and election tool used to synchronize kafka and
mesos nodes and processes.

It is an effort to develop and maintain an open-source server which enables highly reliable
distributed coordination.

ZooKeeper is a centralized service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services. All of these kinds of
services are used in some form or another by distributed applications

Eskimo User and Administration Guide

Chapter 6. Eskimo pre-Packaged services | 45

https://zookeeper.apache.org/

Zookeeper is used by kafka to register topics, mesos for master election, gluster, etc.

6.3.1. Zookeeper specificities within Eskimo

The script zkCli.sh enabling an administrator to browse, query and manipulate
zookeeper is available on the host running the zookeeper container as
/usr/local/bin/zookeeperCli.sh

6.4. glusterFS

Gluster is a free and open source software scalable network filesystem.

GlusterFS is a scalable network filesystem suitable for data-intensive tasks such as cloud
storage and media streaming. GlusterFS is free and open source software and can utilize
common off-the-shelf hardware.

GlusterFS is the common distributed filesystem used within eskimo. It is used to store
business data and to synchronize eskimo cluster nodes.

https://www.gluster.org/

6.4.1. Gluster Infrastructure

Eskimo approaches gluster shares management in a specific way.
Gluster runs from within a docker container and is isolated from the host operating system.
Eskimo provides a set of scripts and tools to manipulated gluster shares.

The architecture can be depicted as follows:

Eskimo User and Administration Guide

46 | Chapter 6. Eskimo pre-Packaged services

https://zookeeper.apache.org/
https://www.gluster.org/

Where:

• The command server and client are internal tools. Eskimo end users and administrators
do not need to be aware of them

• The script gluster_mount.sh takes care of everything and is intended for usage by
end users.

6.4.2. Gluster shares management

Gluster shares are mounted at runtime using standard mount command (fuse filesystem).

However eskimo provides Toolbox script that takes care of all the burden of managing
shared folders with gluster.

This Toolbox script is the available at : /usr/local/sbin/gluster_mount.sh.
This script is called as follows:

calling /usr/local/sbin/gluster_mount.sh

/usr/local/sbin/gluster_mount.sh VOLUME_NAME MOUNT_POINT

where:

• VOLUME_NAME is the name of the volume to be created in the gluster cluster

• MOUNT_POINT is the folder where to mount that volume on the local filesystem.

The beauty of this script is that it takes care of everything:

• Registering the local node with the gluster cluster if not already done

• Creating the volume in gluster if not already done

• Registering the mount point in /etc/fstab and systemd for automatic remount

6.4.3. Gluster specificities within Eskimo

Some notes regarding gluster usage within Eskimo:

• Eskimo’s pre-packaged services leverage on gluster for their data share need between
marathon services and services running natively on node hosts and controlled by
systemd. Gluster provides the abstraction of location of the filesystem for services
deployed on the cluster by marathon.

• Gluster mounts with fuse are pretty weak and not very tolerant to network issues. For
this reason a watchdog runs periodically that fixes gluster mounts that might have been
disconnected following a network cut or another network problem

Eskimo User and Administration Guide

Chapter 6. Eskimo pre-Packaged services | 47

6.5. GDASH

GDASH is the Gluster DASHboard used to monitor gluster shares.

https://github.com/aravindavk/gdash

6.6. Elastic Logstash

Logstash is an open source, server-side data processing pipeline that ingests data from a
multitude of sources simultaneously, transforms it, and then sends it to your favorite
"stash."

Logstash dynamically ingests, transforms, and ships your data regardless of format or
complexity. Derive structure from unstructured data with grok, decipher geo coordinates
from IP addresses, anonymize or exclude sensitive fields, and ease overall processing.

https://www.elastic.co/products/logstash

6.6.1. Logstash specificities within Eskimo

With Eskimo, logstash runs in a docker container ans as such it is pretty isolated from the
host Operating System but also from other containers.
This can be a problem whenever one wants to call logstash form the host machine or even
worst, from another container.

Eskimo provides two key features to circumvent this problem:

1. First, the folder /var/lib/logstash/data is shared between the host, the zeppelin
container and the logstash containers. As such, /var/lib/logstash/data can be
used to pass data to logstash.
In a cluster environment, /var/lib/logstash/data is shared among cluster nodes
using Gluster.

2. Eskimo provides a command /usr/local/bin/logstash-cli that acts as a
command line client to the logstash server container.
Whenever one calls logstash-cli, this client command invokes logstash in the
logstash container (potentially remotely on another node) and passes the arguments is
has been given to the logstash instance.

logstash-cli supports all logstash arguments which are passed through to the invoked

Eskimo User and Administration Guide

48 | Chapter 6. Eskimo pre-Packaged services

https://github.com/aravindavk/gdash
https://www.elastic.co/products/logstash

logstash instance within the logstash container.
In addition, it supports two non standard arguments that are specific to eskimo:

• -target_host XXX.XXX.XXX.XXX which is used to identify the cluster node on
which to invoke logstash. Within the Zeppelin container, this can safely be set to
localhost since there is mandatorily a logstash container available on the node(s)
running Zeppelin.

• -std_in /path/to/file which is used to pass the given file as STDIN to the invoked
logstash instance. This is unfortunately required since piping the STDIN of the logstash-
cli command to the remote logstash instance is not supported yet.

6.7. ElasticSearch

ElasticSearch is a document oriented real-time and distributed NoSQL database
management system.

It is a distributed, RESTful search and analytics engine capable of addressing a growing
number of use cases. As the heart of the Elastic Stack, it centrally stores your data so you
can discover the expected and uncover the unexpected.

Elasticsearch lets you perform and combine many types of searches — structured,
unstructured, geo, metric — any way you want. Start simple with one question and see
where it takes you.

https://www.elastic.co/products/elasticsearch

6.8. Cerebro

Cerebro is used to administer monitor elasticsearch nodes and activities. It is an open
source elasticsearch web admin tool.

Monitoring the nodes here includes all indexes, all the data nodes, index size, total index
size, etc

https://github.com/lmenezes/cerebro

6.9. Elastic Kibana

Eskimo User and Administration Guide

Chapter 6. Eskimo pre-Packaged services | 49

https://www.elastic.co/products/elasticsearch
https://github.com/lmenezes/cerebro

Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack so you can
do anything from tracking query load to understanding the way requests flow through your
apps.

Kibana gives you the freedom to select the way you give shape to your data. And you don’t
always have to know what you’re looking for. With its interactive visualizations, start with
one question and see where it leads you.

https://www.elastic.co/products/kibana

6.9.1. Kibana specificities within Eskimo

Eskimo is able to provision Kibana dashboards and referenced objects automatically at
installation time.

• dashboards and all references objects exports need to be put under
services_setup/kibana/samples/ such as e.g. samples/berka-
transactions.ndjson

• These Kibana export archives need to be self contained : every direct or indirect object
referenced by a dashboard such as obviously visualizations, saved searches, index
patterns, etc. need to be selected when creating the extract.

6.9.2. Pre-packaged Kibana Dashboards

In addition to the Kibana native samples distributed along Kibana, Eskimo provisions a
sample Dashboard for Berka transactions used in Zeppelin sample notes.

6.10. Apache Kafka

Kafka is a distributed and low-latency data distribution and processing framework. It is a
distributed Streaming platform.

Kafka is used for building real-time data pipelines and streaming apps. It is horizontally
scalable, fault-tolerant, wicked fast, and runs in production in thousands of companies.

https://kafka.apache.org/

Eskimo User and Administration Guide

50 | Chapter 6. Eskimo pre-Packaged services

https://www.elastic.co/products/kibana
https://kafka.apache.org/

6.11. Kafka Manager

Kafka Manager is a tool for managing Apache Kafka.

KafkaManager enables to manage multiples clusters, nodes, create and delete topics, run
preferred replica election, generate partition assignments, monitor statistics, etc.

https://github.com/lmenezes/cerebro

6.12. Apache Mesos

Apache Mesos abstracts CPU, memory, storage, and other compute resources away from
machines (physical or virtual), enabling fault-tolerant and elastic distributed systems to
easily be built and run effectively.

Mesos is a distributed system kernel. Mesos is built using the same principles as the Linux
kernel, only at a different level of abstraction.
The Mesos kernel runs on every machine and provides applications (e.g., Hadoop, Spark,
Kafka, Flink) with API’s for resource management and scheduling across entire datacenter
and cloud environments.

http://mesos.apache.org/

6.12.1. mesos-cli

Eskimo provides a specific command line tool for manipulating mesos frameworks:
/usr/local/bin/mesos-cli.sh installed on all nodes of the eskimo cluster.
This tool can be used to list running frameworks, force kill them in a reliable way, etc.

6.13. Mesosphere Marathon

Marathon is a production-grade container orchestration platform for Apache Mesos.

Eskimo leverages on Marathon to distribute services, consoles and Web Applications
accross Eskimo cluster nodes. Eskimo provides virtual routing to the runtime node running
services and wraps the HTTP traffic through SSH tunnels.

Eskimo User and Administration Guide

Chapter 6. Eskimo pre-Packaged services | 51

https://github.com/lmenezes/cerebro
http://mesos.apache.org/

https://mesosphere.github.io/marathon/

6.14. Apache Spark

Apache Spark is an open-source distributed general-purpose cluster-computing
framework. Spark provides an interface for programming entire clusters with implicit data
parallelism and fault tolerance.

Spark provides high-level APIs and an optimized engine that supports general execution
graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and
structured data processing, MLlib for machine learning, GraphX for graph processing, and
Spark Streaming.

https://spark.apache.org/

6.14.1. Gluster shares for Spark

Nodes where spark is installed (either spark executor or spark history server or zeppelin)
automatically have following gluster shares created and mounted:

• /var/lib/spark/data where spark stores its own data but the user can store his
own data to be used accross spark executors as well

• /var/lib/spark/eventlog where the spark executors and the spark driver store
their logs and used by the spark history server to monitor spark jobs.

6.14.2. Other spark specificities within Eskimo

When running on Apache Mesos, Spark needs a special process to be up and running to
orchestrate the shuffle stage in between executor processes on the various nodes. With
Dynamic allocation, Spark needs to understand the executor topology operated by Mesos.
A special process needs to be up and running on every node where spark executors can be
run for this very need, the Mesos Shuffle Service.

Within Eskimo, this Mesos Shuffle Service is identified as the spark-executor service
which serves two intents: operating the Mesos Shuffle Service and setting up host-level
requirements to optimize spark executors execution from Mesis on every node of the
Eskimo cluster.

6.15. Apache Flink

Eskimo User and Administration Guide

52 | Chapter 6. Eskimo pre-Packaged services

https://mesosphere.github.io/marathon/
https://spark.apache.org/

Apache Flink is an open-source stream-processing framework.

Apache Flink is a framework and distributed processing engine for stateful computations
over unbounded and bounded data streams. Flink has been designed to run in all common
cluster environments, perform computations at in-memory speed and at any scale.

Apache Flink’s dataflow programming model provides event-at-a-time processing on both
finite and infinite datasets. At a basic level, Flink programs consist of streams and
transformations. Conceptually, a stream is a (potentially never-ending) flow of data
records, and a transformation is an operation that takes one or more streams as input, and
produces one or more output streams as a result.

https://flink.apache.org

6.15.1. Gluster shares for Flink

Nodes where Flink is installed (either Flink App Master, Flink worker or Zeppelin)
automatically have the following gluster shares created and mounted:

• /var/lib/flink/data flink used to store data to be shared amoung flink
workers.

• /var/lib/flink/completed_jobs where flink completed jobs are stored.

6.16. Apache zeppelin

Apache Zeppelin is a web-based notebook that enables data-driven, interactive data
analytics and collaborative documents with SQL, Scala and more.

Zeppelin is a multiple purpose notebook, the place for all your needs, from Data Discovery
to High-end Data Analytics supporting a Multiple Language Backend.

Within Eskimo, zeppelin can be used to run flink and spark jobs, discover data in
ElasticSearch, manipulate files in Gluster, etc.

https://zeppelin.apache.org/

6.16.1. Zeppelin specificities within Eskimo

Within Eskimo, Zeppelin runs from within a docker container.
Command wrappers and custom command clients are available to enable it to use other
services, running themselves as docker containers under eskimo.

• Elasticsearch, flink and spark are called by using their dedicated intepreter

Eskimo User and Administration Guide

Chapter 6. Eskimo pre-Packaged services | 53

https://flink.apache.org
https://zeppelin.apache.org/

• Logstash is called by using the logstash-cli script from the shell interpreter

In addition, zeppelin has access to shared folders used by the different services in order to
be able to share data with them.
Following shares are mounted within the Zeppelin container:

• Logstash shared folder:

◦ /var/lib/logstash/data

• Spark shares:

◦ /var/lib/spark/data

◦ /var/lib/spark/eventlog

• Flink shares:

◦ /var/lib/flink/data flink

◦ /var/lib/flink/completed_jobs

These shared folders are automatically shared among the different nodes of the cluster
using GlusterFS.

An additional share exist in order to be able to share data to the zeppelin docker container:

• /var/lib/zeppelin/data used to share data between hosts and the zeppelin
container (also automatically shared by gluster when deploying in cluster mode).

6.16.2. A note on memory.

In the zeppelin services installation framework root folder the zeppelin marathon
configuration file zeppelin.marathon.json defines the memory available for zeppelin
as 4.5 GB ("mem": 4500).
While this is fine for a single user usage, it’s far from sufficient for a multi-user production
environment. This should be increased to a minimal additional 2Gb for every user intending
to use Zeppelin concurrently.

6.16.3. Shared or Per Note interpreters

Zeppelin’s interpreters - such as the Spark interpreter wrapping the spark submit process
or the ElasticSearch interpreter - can be instantiated globally for the whole zeppelin
container of isolated per note.
Eskimo’s settings page enables an administrator to change this configuration globally for
all zeppelin interpreters.

The default settings is shared which means that interpreters are shared by all notes
within zeppelin.

Eskimo User and Administration Guide

54 | Chapter 6. Eskimo pre-Packaged services

It’s absolutely key to understand what implication this default setting has in
terms of user experience. Stopping a shared interpreter means killing all
jobs running on that interpreter for all users working concurrenty with
Zeppelin.
For this reason, in a production multi-user environment, it’s important to
make sure to change this setting to per_note thus enabling a much
better isolation between users.
In this case, it’s also very important to significantly increase the amount of
memory available to the zeppelin container to something with minimum
2Gb per user using Zeppelin concurrently with a 2Gb base (e.g. 2 users
would mean 2 Gb Base + 2 x 2 Gb for each user, hence 6Gb RAM in total to
give to Zeppelin). The available memory for Zeppelin is defined in the
zeppelin service marathon configuration file named
zeppelin.marathon.json located in the zeppelin sub -folder of the
services_setup folder.

Eskimo Enterprise Edition is required if one wishes to separate Zeppelin’s interpreters per
user.

6.16.4. Eskimo packaged Zeppelin Sample notes

Upon Zeppelin installation, Eskimo sets up a set of Sample notes in Zeppelin to illustrate
the behaviour of the Eskimo cluster using different frameworks and the different packaged
technologies such as Flink, Spark, Logstash, etc.

These sample zeppelin notes are intended to demonstrate the possibilities with Eskimo and
to show how Zeppelin can be used to program Spark batch jobs, Spark Streaming jobs,
Flink jobs, etc.

The different sample note packages with Eskimo and available from within Zeppelin are
described hereafter.

ElasticSearch Demo (Queries)

This is a very simple demo note showing how to submit queries to ElasticSearch from a
Zeppelin note.

It uses the elasticsearch interpreter from Zeppelin.
One needs to have loaded the "Sample flight data" from within Kibana in prior to execute
the queries from this notebook.

Logstash Demo

The logstash demo note shows how to integrate with logstash on Eskimo from a Zeppelin
note.

Eskimo User and Administration Guide

Chapter 6. Eskimo pre-Packaged services | 55

It uses the shell interpreter from Zeppelin and the command line client wrapper to
logstash.
It uses the "sample berka transaction" datset downloaded from niceideas.ch and inserts it
in ElasticSearch using logstash.

Spark RDD Demo

This is a plain old Spark Demo note showing various RDD operations and how to run them
from within Zeppelin.

It uses the Spark interpreter from Zeppelin.

Spark ML Demo (Regression)

This is a simple note showing some basic ML feature sich as how to run a regression.

It uses the Spark interpreter from Zeppelin.

Spark SQL Demo

This is a simple note showing some Spark SQL functions from within Zeppelin and the way
to integrate with Zeppelin’s visualizations abilities.

It uses the Spark interpreter from Zeppelin.

Spark Integration ES

This note demonstrates how to integrate Spark and ElasticSearch on Eskimo from within
Zeppelin.

It uses the Spark Interpreter from Zeppelin and requires to run the "Logstash Demo" note
first to have the "Berka Transaction" dataset available in ElasticSearch in prior to using it.

Spark Integration Kafka

This note shows how to integrate Spark Streaming (Structured Streaming / SQL actually)
and kafka on Eskimo from within Zeppelin.

Two sample notes must have been executed in prior to executing this one : the "Logstash
Demo" and "Spark Integration ES", in this order.

It uses the Spark interpreter from Zeppelin.

Flink Batch Demo

This is a simple note showing some simple Flink Batch Computing examples.

Eskimo User and Administration Guide

56 | Chapter 6. Eskimo pre-Packaged services

It uses the Flink interpreter from Zeppelin.

Flink Streaming Demo

This note demonstrates a more advanced example of a flink streaming job. It registers a
custom data source and serves as an illustration purpose of Flink’s job monitoring abilities.

It uses the Flink interpreter from Zeppelin.

Flink Integration Kafka

This note shows how to integrate Flink Streaming with Kafka on Eskimo from within
Zeppelin.

Two sample notes must have been executed in prior to executing this one : the "Logstash
Demov and "Spark Integration ES", in this order.

It uses the Flink interpreter from Zeppelin.

6.16.5. Zeppelin 0.9-SNAPSHOT bugs and workarounds

In the version 0.2 of Eskimo, we’re using a SNAPSHOT version of Zeppelin-0.9 since the 0.9
version is not released yet and the former 0.8 version is incompatible with most software
versions packages within Eskimo.

Unfortunately this SNAPSHOT version is a development version and suffers from some
bugs.

These bugs and workarounds are reported hereunder:

REST API for note export is broken.

• Problem : after importing a note using the REST API, the note is not properly saved, it
only exists in memory.
Restarting zeppelin would loose it.

• Workaround : Commit it a first time, the commit it again with a little change (like adding
a space somewhere) and it is saved for real.

to avoid the need to do it after provisisioninf of the Eskimo sample notes, as
of the current version of Eskimo, sample notes provisioning is done py
packaging directly the Zeppelin underlying note storage.
One might want to have a look at the zeppelin
inContainerStartService.sh startup script to find out how this is
done.

Eskimo User and Administration Guide

Chapter 6. Eskimo pre-Packaged services | 57

Importing a note from the UI is broken

• Problem : Importing a note from the UI is broken. The UI always reports that the file is
exceeding maximum size regardless of actual size.

• Workaround : Use the REST API to importe note.
For instance if your have a note test.json that you want to import, go in its folder and
type following command:
curl -XPOST -H "Content-Type: application/json"

http://localhost:38080/api/notebook/import -d @test.json

(replace localhost by the IP address of the node running zeppelin)
(See above note about REST API import workaround)

6.17. Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit.

Prometheus’s main features are: a multi-dimensional data model with time series data
identified by metric name and key/value pairs, PromQL - a flexible query language to
leverage this dimensionality, automatic discovery of nodes and targets, etc.

https://prometheus.io/

6.17.1. Prometheus specificities within Eskimo

Within Eskimo, the packaging of prometheus and it’s exporter is a little peculiar. Both
prometheus and its all exporters for it are packaged together and installed on every node.
Having prometheus on every node is not required since only one instance is active
(collecting metrics) at a time. Packaging it all together is however simpler from a
deployment perspective to avoid having yet another additional service (prometheus
exporters) on Eskimo.

This also enables to collect metrics from different instances and makes the HA
implementation of Prometheus easier in Eskimo Enterprise Edition.

6.18. Grafana

Grafana is the open source analytics & monitoring solution for every database.

Within Eskimo, Grafana is meant as the data visualization tool for monitoring purposes on

Eskimo User and Administration Guide

58 | Chapter 6. Eskimo pre-Packaged services

http://localhost:38080/api/notebook/import
https://prometheus.io/

top of pometheus.

One can use Grafana though for a whole range of other data visualization use cases.

Within Eskimo, Grafana is mostly used as a Data visualization tool on Prometheus raw data,
but it can very well be used to view ElasticSearch data, Spark results, etc.

https://grafana.com/

6.18.1. Grafana specificities within Eskimo

Admin user / password

The default username / password to administer grafana within eskimo is eskimo / eskimo.
These credentials can be changed in the Eskimo grafana configuration part on "Eskimo
Services Configuration" page.

The default username / password can onyl be changed before Grafana’s first
start.

Grafana dashboards provisionning

Eskimo is able to provision Grafana dashboards automatically at installation time.

• dashboards and all references objects exports need to be put under
services_setup/grafana/provisioning/dashboards such as e.g.
services_setup/grafana/provisioning/dashboards/mesos-

monitoring.json along with a yml file describing the dashboard (look at examples)

6.18.2. Pre-packaged Grafana Dashboards

Eskimo CE provides two pre-packaged Grafana dashboards :

• Eskimo System Wide Monitoring : This is the global cluster sttaus monitoring
dashboard. This dashboard is the one used on the Eskimo Status Page.

• Eskimo Nodes System Monitoring : This s a complete monitoring dashboard showing
all individual eskimo cluster nodes metrics. It is intended for fine-grained monitoring
and debugging purpose.

Eskimo User and Administration Guide

Chapter 6. Eskimo pre-Packaged services | 59

https://grafana.com/

Appendix A: Copyright and License

Eskimo is Copyright 2019 eskimo.sh / https://www.eskimo.sh - All rights reserved.
Author : eskimo.sh / https://www.eskimo.sh

Eskimo is available under a dual licensing model : commercial and GNU AGPL.
If you did not acquire a commercial licence for Eskimo, you can still use it and consider it
free software under the terms of the GNU Affero Public License. You can redistribute it
and/or modify it under the terms of the GNU Affero Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any later version.
Compliance to each and every aspect of the GNU Affero Public License is mandatory for
users who did no acquire a commercial license.

Eskimo is distributed as a free software under GNU AGPL in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero Public License for more
details.

You should have received a copy of the GNU Affero Public License along with Eskimo. If not,
see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA, 02110-1301 USA.

You can be released from the requirements of the license by purchasing a commercial
license. Buying such a commercial license is mandatory as soon as :

• you develop activities involving Eskimo without disclosing the source code of your own
product, software, platform, use cases or scripts.

• you deploy eskimo as part of a commercial product, platform or software.

For more information, please contact eskimo.sh at https://www.eskimo.sh

The above copyright notice and this licensing notice shall be included in all copies or
substantial portions of the Software.

Eskimo User and Administration Guide

60 | Appendix A: Copyright and License

https://www.eskimo.sh
https://www.eskimo.sh
https://www.gnu.org/licenses/
https://www.eskimo.sh

	Eskimo User and Administration Guide
	Table of Contents
	Chapter 1. Eskimo Introduction
	1.1. Key Features
	1.2. Why is Eskimo cool ?
	1.3. Eskimo’s DNA
	1.4. Eskimo Architecture
	1.4.1. Techical Architecture
	1.4.2. Typical Application architecture
	1.4.3. Sample System Architecture

	1.5. Eskimo building

	Chapter 2. Eskimo Installation
	2.1. Installation target
	2.1.1. Local Eskimo installation
	2.1.2. Installing eskimo on Windows.

	2.2. Prerequisites
	2.2.1. Java 11 or greater
	2.2.2. System requirements
	2.2.3. Network requirements
	2.2.4. Prerequisites on eskimo cluster nodes
	Minimum hardware
	Fedora nodes specificities

	2.2.5. Required packages installation and Internet access on cluster nodes
	Eskimo system user
	Protecting eskimo nodes with a firewall

	2.3. Extract archive and install Eskimo
	2.3.1. SystemD Installation
	2.3.2. Extracted Archive layout and purpose
	2.3.3. Utility commands

	2.4. Access eskimo
	2.5. First run and initial setup
	2.5.1. Building packages locally
	Requirements
	Instructions to install these tools

	2.5.2. Checking for updates

	2.6. Typical startup issues
	2.6.1. eskimo-users.json cannot be written

	2.7. Setting up SSH Public Key Authentication
	2.7.1. Introduction
	2.7.2. How Public Key Authentication Works
	2.7.3. Generate an SSH Key Pair
	2.7.4. Configure an SSH/SFTP User for Your Key
	Method 1: Using ssh-copy-id
	Method 2: Manual Configuration

	2.7.5. Log In Using Your Private Key
	2.7.6. Granting Access to Multiple Keys
	2.7.7. Use the private key in eskimo

	Chapter 3. Setting up the eskimo cluster
	3.1. Services settings configuration
	3.2. Nodes and native services layout configuration
	3.2.1. Adding nodes to the eskimo cluster
	3.2.2. Deploying services
	3.2.3. Master services
	3.2.4. Slave services
	3.2.5. Applying nodes configuration
	3.2.6. Forcing re-installation of a service.

	3.3. Marathon Services Selection

	Chapter 4. Eskimo User Guide
	4.1. The menu
	4.2. Eskimo System Status Screen
	4.2.1. Action Menu

	4.3. Acting on services reporting errors
	4.4. SSH and SFTP Client
	4.4.1. SSH Terminal
	4.4.2. SFTP File Manager

	4.5. Services Web Consoles
	4.5.1. Demo Mode
	4.5.2. The DemoVM
	4.5.3. Deactivating Demo Mode on the demo VM

	Chapter 5. Eskimo Architecture and Design Elements
	5.1. SSH Tunelling
	5.2. Security
	5.3. Confidentiality and cluster protection
	5.3.1. Data Encryption
	5.3.2. User rights segregation and user imprersonation

	5.4. High availability

	Chapter 6. Eskimo pre-Packaged services
	6.1. Operation principles
	6.1.1. Systemd unit configuration files
	6.1.2. Commands wrappers for kafka, logstash, spark and flink
	6.1.3. Reloading a Service UI IFrame

	6.2. NTP
	6.3. Zookeeper
	6.3.1. Zookeeper specificities within Eskimo

	6.4. glusterFS
	6.4.1. Gluster Infrastructure
	6.4.2. Gluster shares management
	6.4.3. Gluster specificities within Eskimo

	6.5. GDASH
	6.6. Elastic Logstash
	6.6.1. Logstash specificities within Eskimo

	6.7. ElasticSearch
	6.8. Cerebro
	6.9. Elastic Kibana
	6.9.1. Kibana specificities within Eskimo
	6.9.2. Pre-packaged Kibana Dashboards

	6.10. Apache Kafka
	6.11. Kafka Manager
	6.12. Apache Mesos
	6.12.1. mesos-cli

	6.13. Mesosphere Marathon
	6.14. Apache Spark
	6.14.1. Gluster shares for Spark
	6.14.2. Other spark specificities within Eskimo

	6.15. Apache Flink
	6.15.1. Gluster shares for Flink

	6.16. Apache zeppelin
	6.16.1. Zeppelin specificities within Eskimo
	6.16.2. A note on memory.
	6.16.3. Shared or Per Note interpreters
	6.16.4. Eskimo packaged Zeppelin Sample notes
	ElasticSearch Demo (Queries)
	Logstash Demo
	Spark RDD Demo
	Spark ML Demo (Regression)
	Spark SQL Demo
	Spark Integration ES
	Spark Integration Kafka
	Flink Batch Demo
	Flink Streaming Demo
	Flink Integration Kafka

	6.16.5. Zeppelin 0.9-SNAPSHOT bugs and workarounds
	REST API for note export is broken.
	Importing a note from the UI is broken

	6.17. Prometheus
	6.17.1. Prometheus specificities within Eskimo

	6.18. Grafana
	6.18.1. Grafana specificities within Eskimo
	Admin user / password
	Grafana dashboards provisionning

	6.18.2. Pre-packaged Grafana Dashboards

	Appendix A: Copyright and License

